2023-05-10 14:56:27
最近,瑞士研究员在生物3D打印领域取得了新的突破。他们开发了一种的内窥镜SLA技术,该技术利用超细光纤来聚焦激光束,以创建非常小规模的结构。这种创新的方法有朝一日可以用来将与生物兼容的结构直接打印到人体内的组织中,具有修复损伤的潜力以及一系列其他关键应用。
目前,市场上已经存在一系列基于激光的3D微制造技术,但是大多数的方法依赖于复杂的激光设备,这些设备可能过于昂贵而且体积过大。这些方法利用称为双光子聚合的光学现象,而新方法利用了不同的现象,其中特定化学物质的凝固仅在光强度的某一阈值以上发生。
(双光子激光设备)
据瑞士洛桑联邦理工学院研究小组负责人PaulDelrot介绍:“我们拥有通过光纤操作和成形光的专业技术,使我们认为微结构可以用紧凑的系统打印,另外,为了让系统更实惠,我们利用了非线性剂量响应的光敏聚合物,这可以用简单的连续波激光器工作,所以不需要昂贵的脉冲激光器。
(使用双光子聚合制造的结构)
团队使用的相对便宜的连续激光束发射波长为488纳米的光。这是在可见光范围内,对人体细胞来说,比其他类型的激光更安全。他们通过一根微小的光纤将光束聚焦,使光敏液体的液滴的特定区域有针对性地固化。这与立体光刻3D打印方法类似,但规模要小得多。所用的光聚合物是由一种有机聚合物前体与一种光引发剂结合而成的,它是由化学品制成的,这种化学品价格适中,易于购得。
在微制造过程之前对激光设备进行校准,使得光线聚焦而不必移动光纤。在光聚合物中高度精确地形成了空心和坚实的微结构,具有1微米的横向(一侧到另一侧)打印分辨率和21.5微米的轴向(深度)打印分辨率。这种方法的成功意味着它可以很快用于研究细胞如何与动物模型中的各种微结构相互作用,最终为人体内窥镜3D打印铺平了道路。
(使用新技术创建的结构)
“随着进一步的发展,我们的技术可以使内窥镜微型制造工具在手术过程中具有价值,这些工具可以用来打印微米或纳米尺度的三维结构,促进细胞的粘附和生长,以创建工程组织,恢复受损组织。”Delrot说,“与最先进的双光子光聚合系统相比,我们的设备具有较粗糙的打印分辨率,但是,研究细胞相互作用是潜在的,由于我们的方法不需要复杂的光学部件,因此可以适用于当前的内窥镜系统。”
据悉,该研究结果已经发表在“OpticsExpress”期刊上。该研究团队的下一个阶段是在他们开拓性技术的外科实施过程中,开发一种新的生物兼容的光聚合物化学品。他们还需要为这种材料创建一个紧凑的交付系统。另一个需求是更快的扫描速度,但是这个限制可以通过使用商用内窥镜而不是超薄光纤来克服,因为仪器的尺寸不一定与所有应用相关。该团队还需要开发一种技术来完成和后处理体内打印的微观结构,使其适合生物医学功能。